If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2w^2-12w-9=0
a = -2; b = -12; c = -9;
Δ = b2-4ac
Δ = -122-4·(-2)·(-9)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{2}}{2*-2}=\frac{12-6\sqrt{2}}{-4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{2}}{2*-2}=\frac{12+6\sqrt{2}}{-4} $
| 209-11x=13(19-x) | | 6x-(2-(3x-1)-8)=-2(x+5)+7 | | 8x-8x=28 | | 2x+35=8x-25 | | -8=c/2 | | X+11=2x+-14 | | 40x-160=8x | | (9)=4x-7 | | 10s+20=30 | | 13x-7=6x+14 | | 7+9m-4=8m+57-5m | | ^3-2x^2-4x+8=0 | | -1x-2-5x=-44 | | 2(14-7z)=-56 | | -8=k-7 | | 3(3x-2)=-44 | | 71-x=86-2x | | 5+2(11-h)=8 | | 3^(2x+1)=4^(3x) | | 23-5=2v | | d+3=-7 | | 96-117=-4(-6y)-13+y | | 5x=10(3x+5) | | 10x-3=3x+27 | | -6+h=-1 | | 4h=8+2h | | 10=9-(12k-6) | | 9y=6*13y | | T+10=7t-8 | | 4(6-11)=y-7 | | 3y+2=104 | | 4x-(1/10)=3x+(4/5) |